DPP4 Deficiency Preserved Cardiac Function in Abdominal Aortic Banding Rats

نویسندگان

  • Hui-Chun Ku
  • Ming-Jai Su
چکیده

Dipeptidyl peptidase-4 (DPP4) enzyme inhibition has been reported to increase plasma glucagon-like peptide-1 (GLP-1) level for controlling postprandial glucose concentration. A prominent GLP-1 level in DPP4-deficient rats contributed to the resistance of endotoxemia and myocardial infarction. DPP4 deficiency also increased the capability against H₂O₂-induced stress in cardiomyocyte. However, long term effect of loss DPP4 activity on cardiac performance remained unclear. We used abdominal aortic banding (AAB) to induce pressure overload in wild-type and DPP4-deficient rats, and investigated the progression of heart failure. Cardiac histology and function were determined. Blood sample was collected for the plasma biochemical marker measurement. Heart weight to body weight ratio increased 1.2-fold after 6 weeks of AAB surgery. Cardiac function was compensated against pressure overload after 6 weeks of AAB surgery, but progressed to deterioration after 10 weeks of AAB surgery. AAB induced cardiac dysfunction was alleviated in DPP4-deficient rats. DPP4 activity increased significantly in wild-type rats after 10 weeks of AAB surgery, but remained unchanged in DPP4-deficient rats. In contrast, GLP-1 concentration was elevated by AAB after 6 weeks of surgery in DPP4-deficient rats, and remained high after 10 weeks of surgery. Ang II level markedly increased after 6 weeks of AAB surgery, but were less in DPP4-deficient rats. Massive collagen deposits in wild-type rat hearts appeared after 10 weeks of AAB surgery, which were alleviated in DPP4-deficient rats. Long term deficiency of DPP4 activity improved cardiac performance against pressure overload in rat, which may be attributed to a great quantity of GLP-1 accumulation during AAB.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat

Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...

متن کامل

Cardiac Hypertrophy Stem Cell Antigen 1 Protects Against Cardiac Hypertrophy and Fibrosis After Pressure Overload

Stem cell antigen (Sca) 1, a glycosyl phosphatidylinositol-anchored protein localized to lipid rafts, is upregulated in the heart during myocardial infarction and renovascular hypertension-induced cardiac hypertrophy. It has been suggested that Sca-1 plays an important role in myocardial infarction. To investigate the role of Sca-1 in cardiac hypertrophy, we performed aortic banding in Sca-1 ca...

متن کامل

Stem cell antigen 1 protects against cardiac hypertrophy and fibrosis after pressure overload.

Stem cell antigen (Sca) 1, a glycosyl phosphatidylinositol-anchored protein localized to lipid rafts, is upregulated in the heart during myocardial infarction and renovascular hypertension-induced cardiac hypertrophy. It has been suggested that Sca-1 plays an important role in myocardial infarction. To investigate the role of Sca-1 in cardiac hypertrophy, we performed aortic banding in Sca-1 ca...

متن کامل

1, 25 Dihydroxyvitamin D3 Protects the Heart Against Pressure Overload-induced Hypertrophy without Affecting SIRT1 mRNA Level

Background and Aims: There has been scant information concerning antihypertrophic effects of vitamin D specifically on its cellular and molecular mechanisms. Sirtuin 1 (SIRT1) is regarded as a key deacetylase enzyme in cardiomyocytes which applies potential cardioprotective effects by functional regulation of different proteins. This study aimed to evaluate the effects of 1, 25-dihydroxyvitamin...

متن کامل

Dynamic changes of hemodynamic parameters and cardiac transcription of sirtuins in adaptive and mal-adaptive phases of pressure overload-induced hypertrophy in rats

Introduction: The aim of the study was to investigate the structural and hemodynamic changes as well as cardiac transcriptional profile of the key regulatory proteins, sirtuins family (SIRT1-7), in adaptive and mal-adaptive phases of left ventricular hypertrophy (LVH). Methods: LVH was induced in male Wistar rats (190±20g) by abdominal aortic banding. The third and sixteenth weeks post-surgery ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014